Lesson 4: Tkinter

Brought to you by the University of Maryland Balloon Payload Program

Recap

We can think of an 'object' as a group of variables in a labeled bin. Another classic example is a customer on a website:

A customer has:

- Email
- Password
- Age
- Phone Number
- Address

Customer 112345 has:

Email: "customer1@gmail.com"

Password: "password123"

- Age: 24

- Phone #: "3012469980"

Address: "554 Normweller Road,

College Park, MD, 20872"

How People Interact with Code

Developers

- Command Line Interface (CLI)
- Text only
- Fast

End-Users

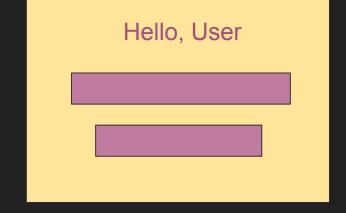
- Graphical User Interface (GUI)
- Text, images, buttons, etc.
- Much slower

Importing Tkinter

Official Python library

- Comes with Python code
- Lets us make a GUI

import tkinter as tk


from tkinter import Tk, ttk

Anatomy of a Tkinter Code

Every Tkinter GUI has a window and widgets

Windows hold all the widgets

- "Box" for everything the user will interact with
- "root" window as the base

Widgets are everything else

- Buttons, text entry, pictures, etc.

Let's code a simple window

root.mainloop() # Keep code running

```
import tkinter as tk  # Make sure tkinter is lowercase root = tk.Tk()  # the *root window* (baseline) root.title("Hello Tkinter")  # window title text root.geometry("300x100")  # optional: width x height
```

Making a basic GUI

Now we have a grey window, that's not really useful, so let's add text!

Syntax:

label = tk.Label(master, options)

Master is the window the label "belongs" to

There are a TON of options

label = tk.Label(root, text="Hello, World!")

Where is our widget?

Remember, the computer will only do what we say

- We need to "place" the label

```
label.pack(side="top/bottom/left/right", pady=y, padx=x)
```

Or

label.grid(row=y, column=x)

root.grid_columnconfigure(cell, weight=q)

Other useful widgets

Button

```
btn = tk.Button(master, text="string", command=function)
```

Text Box

```
user_entry = tk.Entry(master, textvariable=variable_name)
```

Let's Make a Login Page

- 1. Create a username box
- 2. Create a password box
- 3. Create a button to submit
- 4. Create a function for the button
- 5. Print the username and password

Entry Widgets Have Some Quirks

The variable we use has to be "initialized"

- Tells Python where to store the entry data
- Stored as an object

```
variable_name = tk.StringVar()
```

variable = variable_name.get()

Tkinter Label Options

- text: Sets the text displayed on the label.
- font: Specifies the font of the text (e.g., ("Helvetica", 12)).
- bg: Sets the background color.
- fg: Sets the foreground (text) color.
- width: Sets the width of the label in characters.
- height: Sets the height of the label in lines.
- padx: Horizontal padding.
- pady: Vertical padding.
- relief: Border style (e.g., solid, raised, sunken).
- anchor: Specifies the position of the text if the widget has more space than required for the text.

Multiple Windows

Coding on our computers

Visual Studio Code

- Where we type all our code
- code.visualstudio.com

Python

- Lets our computer run our written code
- python.org/downloads

What is Visual Studio Code (VSCode)?

A nicer way to write and edit code

- Technically, all code could be written in notepad
- VSCode has tools that make coding easier
 - Autocompletes variable names
 - Colors written code
 - User extensions for additional features
 - Highlights errors
 - More!

```
# Water (includes thermal scattering)
water = openmc.Material(name='Water')
```

Functions

```
# Define a function for addition
def add(a, b):
  return a + b
# Define a function for subtraction
def subtract(a, b):
  return a - b
# Define a function for multiplication
def multiply(a, b):
  return a * b
# Define a function for division
def divide(a, b):
  if b == 0:
     return "Error! Cannot divide by zero."
  return a / b
# Using the functions
x = 10
y = 5
```

```
# Call the functions and print the results
sum result = add(x, y)
print("Addition:", sum_result)
diff result = subtract(x, y)
print("Subtraction:", diff result)
product_result = multiply(x, y)
print("Multiplication:", product result)
quotient_result = divide(x, y)
print("Division:", quotient result)
```