Welcome back to Coding!

Lesson 2: Arrays, Loops, and Memories

Brought to you by the University of Maryland Balloon
Payload Program

Recap

- Data Types

- Variables

- Conditional Statements
- Libraries

Data Types

Integer: 1,2,3,4,5, ...

- Float: 1.5, 20.2, 100.12354, 3.1415, ...

) €0

- Character: ‘a’, 'b’, ‘'c), ...
- String: ‘Hello World’, ‘abcdefg’, ...

- Boolean: True, False

Variables

Ways for us to store information that we want to use later

X = “pony”

X=10
X=X+10

Conditional Statements

A way for us to get the computer to make decisions

- If something is true
Run this code

- Else
- Run this code

Libraries

Snippets of code that other people wrote that we use ourselves

- Simplifies what we need to do

random.randint(low, high)

Picks a number between and including the low and high bounds

Arrays - what are they?

- A way of representing a list of things in code
- Example shopping list:

- Eggs

- Milk

- Bread

- Apples
- Example shopping list array

7 13 7 (13 b 13

shopping_list = [*eggs”, “milk”, “bread”, “apples’]

So an array is just a list of things -> this is why python
calls them lists (list = human, array = computer)

Arrays - how to write them down

- Commonly used syntax:

Starting bracket > [
Data separated by commas — 1, 2, 3,4, 5
Ending bracket > |

Combining it all together:
[1, 2, 3, 4, 5]— an array!

Sometimes, arrays use parenthesis —— (thing1, thing2, thing3, ...

Sometimes, array use curly brackets —— {thing1, thing2, thing3, ...

Most often, they use brackets!!! » [thing1, thing2, thing3]

Arrays - uses n’'stuff

Arrays allow us to store multiple points of data in a specific order - just like a list of
things!

Python arrays (called lists) can store different types of data:

- Strings: [“a”, “b”, “c”, “defg”, “h”]
- Floats/Doubles: [124.832, 23.11, 2.431]
- Integer: [1, 54, 46, 9, 0]

- Booleans: True/False

In fact, a string is just an array of character!

[“ 7 Kk N (14 7 Kk N (1%L (11 7 (11 7 (13 b (1

m”, "7 r’, “o’, "'m’, “e”, “0"] = i am romeo”

Using and saving data in a array

When you want to change a value in your list, you cross it out or erase it - same with
code!

Let's say | have an array:

b (11 kb (11

my_things = ["ball”, “shoe”, “pants”, “hat’]

Get the shoe:

my_shoe = my_things[1]
Add an item to the end of the array:

my_things.append(“phone”) ——» here, I've added a new item called “phone”
Change the item at a specific place in the array:

my_things[2] = “jeans” » here, I've changed “pants” to “jeans”

Using data stored in a array

Normal paper lists, when numbered, start at 1,
but arrays start at 0, and represent the index
(location in the list) of a value:

O 1 2 3

11 11
my_list — [“a”, “b”, “C”, “d”]

(g)

print(my_list[0]) — “a

print(my_list[2]) —— “C

Try it!

N ok Wb~

Normal shopping list

2d arrays

You can also store arrays inside of arrays, and make a matrix of data -> pretty
much like a table of stuff instead of a list of stuff:

Example:

My table for the weather:

1) Timeof Day | Temperature Row 1
2) 12pm | 60° Row 2
3) 1pm | ©65°

4) 2pm | 68°

95) 3pm | 70°

6) 4pm | 71°

Column 1 Column 2

2d arrays

You can also store arrays inside of arrays, and make a matrix of data -> pretty
much like a table of stuff instead of a list of stuff:

Example, my 2d array representing the weather:
my_weather_table = [[12, 60], ——— Basically just arrays inside of arrays!
[1,65],
[2,68],
[3, 70],
[4, 71]]
To access the data, you need to index twice! First number is the ROW, second
number is the COLUMN:
print(my_weather_table[2][1]) —— 68

Using Arrays to make Rock, Paper, Scissors Better

choice = 1
rps = ["rock”, "paper”, "scissors"]
selected_choice = rps|[choice - 1] # Why subtracting 17?

print(“selected choice”)

Numpy
Numpy is a python package that allows you to create 1D and 2d arrays with much
more ease and use them:

Import numpy

Or, people commonly do:
Import numpy as np

This allows you to type np instead of numpy when using the language.

Loops

Previous code

- Loops: sets of instructions that are
continuously repeated until something
happens

- Types: ‘for’ loops, ‘while’ loops

Code block

- Incredibly useful for making the
computer do things hundreds,
millions, or even billions of times

- Yeah, the computer is that fast!

The “while” Loop

Syntax:
while (condition):
(code you want to run)

(you can add as much as you want)

This will run the code you want to run until the condition becomes FALSE.

The “while” Loop - Example

x=0 x=0
while (x < 10): while (x < 10):
print(x) print(x)

X=X+ 1

The “while” Loop - Example

word = “hello” word = “hello”
while (len(word) < 10) while (word !'= “helloooo”)
word = word + “0” word = word + “0”

print(word) print(word)

DAN ADD A LEETCODE CS50 TYPE LOOP EXAMPLE
TO SHOW HOW YOU CAN GET COOL STRUCTURE
WITH NESTED LOOPS OR SOMETHING

The “for” Loop: Arrays & Loops

Syntax: Syntax:
for (iin range(#, #)): for (element in list):
(code you want to run) (code you want to run)

if (condition):

break (this stops the loop)

The “for” Loop - Example

Syntax: Syntax:
list = ["rock”, “paper”, “scissors’] list = ["rock”, “paper”, “scissors’]
for (iin range(0, 2)): for (element in list):

print(list[i]) print(element)

print(shoot) print(shoot)

Breaking Loops

Let’s say you have a loop that’s working great - but you want it to stop if
something specific happens.

For example: you want to find out if a word is in the dictionary

- You are looking through every word in the dictionary
- You look at each word, and check if it's the word you want
- When you find the word you want, you stop the loop

Breaking Loops

for (element in list):

(code you want to run)

if (condition):

break (this stops the loop)

Let’s try this with an index
variable!

word i want = “orange”

b 1 b 13

dictionary = [“apple”, “banana”, “coconut’, ...]
(imagine every word is in this list)

for (word in dictionary):
if (word_i_want == word):
print(“Your word is in the dictionary”)
break

print(“code complete”)

Some useful tools:

word = “HELLO” i =1
word = word.lower() i=i+1
print(word) print(i)
This turns your words to i +=1

lower-case, which might

be useful in case you

accidentally use caps! These two statements are
equivalent

print(i)

Computer Memory

Where is all of this stuff being stored?

- QOur code, variables, etc.

The computer contains a grid of ones and zeros.

- Everything we do happens in these ones and zeros

Memory Addresses

How does the computer know where things are?

- Each piece of memory has an address
- This address is stored in our variable

- Data is sequential
- The data at address 10 is after 9 and before 11

How is memory useful?

Arrays, long lines of sequential memory

Project Setup

VSCode sorts projects into folders
- Let's make a folder to store our code
We’'re going to use libraries...

- Libraries are other people’s code
- Their code is updated, which might make our code stop working

python -m venv myenv

Today'’s Project: The 5x5 Treasure Hunt

Rules:

0 1 2 3 4

1. There is a 5x5 grid 0
2. The treasure is hidden at a

random place 1

a. Place = Row/Column
3. We guess where the treasure is 2

a. If we are right, we win!

b. If we are wrong, we put an X there 3
4. (Optional) If the treasure chest is

right next to our guess ->puta“?”

there

Upcoming Topics

Lesson 1: Coding Basics & Logic
Lesson 2: Arrays, Loops, & Logic
Lesson 3: Graphics, Ul, Functions

Lesson 4: Python Local HTML Website, Objects

Access this lesson and extra materials online!

Visit our Wiki Page:

https://ter.ps/STEMworkshop

Coding on our computers

Visual Studio Code Python
- Where we type all our code - Lets our computer run our
- code.visualstudio.com written code

- python.org/downloads

http://code.visualstudio.com/
http://python.org/downloads

What is Visual Studio Code (VSCode)?

A nicer way to write and edit code

- Technically, all code could be written in notepad

- VSCode has tools that make coding easier

Autocompletes variable names
Colors written code

User extensions for additional features
Highlights errors
\Y[o] (=)

Water (includes thermal scattering)
water = openmc.Material(name="'Water')

Functions

Define a function for addition
def add(a, b):
returna + b

Define a function for subtraction
def subtract(a, b):
returna-b

Define a function for multiplication
def multiply(a, b):
returna * b

Define a function for division
def divide(a, b):
if b ==0:
return "Error! Cannot divide by zero."
returna/b

Using the functions
x=10
y=5

Call the functions and print the results
sum_result = add(x, y)
print("Addition:", sum_result)

diff_result = subtract(x, y)
print("Subtraction:", diff_result)

product_result = multiply(x, y)
print("Multiplication:", product_result)

quotient_result = divide(x, y)
print("Division:", quotient_result)

