
Welcome back to Coding!
Lesson 2: Arrays, Loops, and Memories

Brought to you by the University of Maryland Balloon
Payload Program

Recap

- Data Types
- Variables
- Conditional Statements
- Libraries

Data Types

- Integer: 1, 2, 3, 4, 5, …

- Float: 1.5, 20.2, 100.12354, 3.1415, …

- Character: ‘a’, ‘b’, ‘c’, …

- String: ‘Hello World’, ‘abcdefg’, …

- Boolean: True, False

Variables

Ways for us to store information that we want to use later

X = “pony”

X = 10

X = X + 10

Conditional Statements

A way for us to get the computer to make decisions

- If something is true
- Run this code

- Else
- Run this code

Libraries

Snippets of code that other people wrote that we use ourselves

- Simplifies what we need to do

random.randint(low, high)

Picks a number between and including the low and high bounds

Arrays - what are they?

- A way of representing a list of things in code
- Example shopping list:

- Eggs
- Milk
- Bread
- Apples

- Example shopping list array

shopping_list = [“eggs”, “milk”, “bread”, “apples”]

So an array is just a list of things -> this is why python
calls them lists (list = human, array = computer)

Arrays - how to write them down

- Commonly used syntax:

Starting bracket [
Data separated by commas 1, 2, 3, 4, 5
Ending bracket]
Combining it all together:

[1, 2, 3, 4, 5] an array!

Sometimes, arrays use parenthesis (thing1, thing2, thing3, …)

Sometimes, array use curly brackets {thing1, thing2, thing3, ...}

Most often, they use brackets!!! [thing1, thing2, thing3]

Arrays - uses n’stuff

Arrays allow us to store multiple points of data in a specific order - just like a list of
things!

Python arrays (called lists) can store different types of data:

- Strings: [“a”, “b”, “c”, “defg”, “h”]
- Floats/Doubles: [124.832, 23.11, 2.431]
- Integer: [1, 54, 46, 9, 0]
- Booleans: True/False

In fact, a string is just an array of character!

[“i”, “ ”, “a”, “m”, “ ”, “r”, “o”, “m”, “e”, “o”] = “i am romeo”

Using and saving data in a array
When you want to change a value in your list, you cross it out or erase it - same with
code!

Let's say I have an array:
my_things = [“ball”, “shoe”, “pants”, “hat”]

Get the shoe:
my_shoe = my_things[1]

Add an item to the end of the array:
my_things.append(“phone”) here, I’ve added a new item called “phone”

Change the item at a specific place in the array:
my_things[2] = “jeans” here, I’ve changed “pants” to “jeans”

Using data stored in a array
Normal paper lists, when numbered, start at 1,
but arrays start at 0, and represent the index
(location in the list) of a value:

my_list = [“a”, “b”, “c”, “d”]
print(my_list[0]) “a”

print(my_list[2]) “c”

Try it!

1.
2.
3.
4.
5.
6.
7.

0 1 2 3

Normal shopping list

2d arrays

You can also store arrays inside of arrays, and make a matrix of data -> pretty
much like a table of stuff instead of a list of stuff:

Example:
My table for the weather:

1) Time of Day | Temperature
2) 12pm | 60o

3) 1pm | 65o

4) 2pm | 68o

5) 3pm | 70o

6) 4pm | 71o

Row 1

Column 1 Column 2

Row 2
.
.
.

2d arrays

You can also store arrays inside of arrays, and make a matrix of data -> pretty
much like a table of stuff instead of a list of stuff:

Example, my 2d array representing the weather:
my_weather_table = [[12, 60],

 [1 , 65],
 [2 , 68],
 [3 , 70],
 [4, 71]]

To access the data, you need to index twice! First number is the ROW, second
number is the COLUMN:

print(my_weather_table[2][1]) 68

Basically just arrays inside of arrays!

Using Arrays to make Rock, Paper, Scissors Better

choice = 1

rps = ["rock", "paper", "scissors"]

selected_choice = rps[choice - 1] # Why subtracting 1?

print(“selected_choice”)

Numpy

Numpy is a python package that allows you to create 1D and 2d arrays with much
more ease and use them:

Import numpy

Or, people commonly do:

Import numpy as np

This allows you to type np instead of numpy when using the language.

Loops

- Loops: sets of instructions that are
continuously repeated until something
happens

- Types: ‘for’ loops, ‘while’ loops

- Incredibly useful for making the
computer do things hundreds,
millions, or even billions of times

- Yeah, the computer is that fast!

The “while” Loop

Syntax:

while (condition):

(code you want to run)

(you can add as much as you want)

This will run the code you want to run until the condition becomes FALSE.

The “while” Loop - Example

x = 0

while (x < 10):

print(x)

x = 0

while (x < 10):

print(x)

x = x + 1

The “while” Loop - Example

word = “hello”

while (len(word) < 10)

word = word + “o”

print(word)

word = “hello”

while (word != “helloooo”)

word = word + “o”

print(word)

DAN ADD A LEETCODE CS50 TYPE LOOP EXAMPLE
TO SHOW HOW YOU CAN GET COOL STRUCTURE
WITH NESTED LOOPS OR SOMETHING

The “for” Loop: Arrays & Loops

Syntax:

for (i in range(#, #)):

(code you want to run)

Syntax:

for (element in list):

(code you want to run)

if (condition):

break (this stops the loop)

The “for” Loop - Example

Syntax:

list = [“rock”, “paper”, “scissors”]

for (i in range(0, 2)):

print(list[i])

print(shoot)

Syntax:

list = [“rock”, “paper”, “scissors”]

for (element in list):

print(element)

print(shoot)

Breaking Loops

Let’s say you have a loop that’s working great - but you want it to stop if
something specific happens.

For example: you want to find out if a word is in the dictionary

- You are looking through every word in the dictionary
- You look at each word, and check if it’s the word you want
- When you find the word you want, you stop the loop

Breaking Loops

for (element in list):

(code you want to run)

if (condition):

break (this stops the loop)

word_i_want = “orange”

dictionary = [“apple”, “banana”, “coconut”, …]
(imagine every word is in this list)

for (word in dictionary):

if (word_i_want == word):

print(“Your word is in the dictionary”)

break

print(“code complete”)Let’s try this with an index
variable!

Some useful tools:

word = “HELLO”

word = word.lower()

print(word)

This turns your words to
lower-case, which might
be useful in case you
accidentally use caps!

i = 1

i = i + 1

print(i)

i += 1

print(i)

These two statements are
equivalent

Computer Memory

Where is all of this stuff being stored?

- Our code, variables, etc.

The computer contains a grid of ones and zeros.

- Everything we do happens in these ones and zeros

Memory Addresses

How does the computer know where things are?

- Each piece of memory has an address
- This address is stored in our variable
- Data is sequential

- The data at address 10 is after 9 and before 11

How is memory useful?

Arrays, long lines of sequential memory

-

Project Setup

VSCode sorts projects into folders

- Let’s make a folder to store our code

We’re going to use libraries…

- Libraries are other people’s code
- Their code is updated, which might make our code stop working

python -m venv myenv

Today’s Project: The 5x5 Treasure Hunt

Rules:

1. There is a 5x5 grid
2. The treasure is hidden at a

random place
a. Place = Row/Column

3. We guess where the treasure is
a. If we are right, we win!
b. If we are wrong, we put an X there

4. (Optional) If the treasure chest is
right next to our guess -> put a “?”
there

0 1 2 3 4

0

1

2

3

4

Upcoming Topics

Lesson 1: Coding Basics & Logic

Lesson 2: Arrays, Loops, & Logic

Lesson 3: Graphics, UI, Functions

Lesson 4: Python Local HTML Website, Objects

Access this lesson and extra materials online!

Visit our Wiki Page:

https://ter.ps/STEMworkshop

https://ter.ps/STEMworkshop

Visual Studio Code

- Where we type all our code
- code.visualstudio.com

Coding on our computers

Python

- Lets our computer run our
written code

- python.org/downloads

http://code.visualstudio.com/
http://python.org/downloads

What is Visual Studio Code (VSCode)?

A nicer way to write and edit code

- Technically, all code could be written in notepad
- VSCode has tools that make coding easier

- Autocompletes variable names
- Colors written code
- User extensions for additional features
- Highlights errors
- More!

Functions
Define a function for addition
def add(a, b):
 return a + b

Define a function for subtraction
def subtract(a, b):
 return a - b

Define a function for multiplication
def multiply(a, b):
 return a * b

Define a function for division
def divide(a, b):
 if b == 0:
 return "Error! Cannot divide by zero."
 return a / b

Using the functions
x = 10
y = 5

Call the functions and print the results
sum_result = add(x, y)
print("Addition:", sum_result)

diff_result = subtract(x, y)
print("Subtraction:", diff_result)

product_result = multiply(x, y)
print("Multiplication:", product_result)

quotient_result = divide(x, y)
print("Division:", quotient_result)

