
Meat & Potatoes: Objects &
Functions (OOP)
Lesson 3: Objects, Functions

Brought to you by the University of Maryland Balloon
Payload Program

Recap

- Arrays
- Still need to talk about 2D Arrays!

- Loops
- For loops, while loops

- If statements
- If, else if, else statements

Data Types

- Integer: 1, 2, 3, 4, 5, …

- Float: 1.5, 20.2, 100.12354, 3.1415, …

- Character: ‘a’, ‘b’, ‘c’, …

- String: ‘Hello World’, ‘abcdefg’, …

- Boolean: True, False

Making our own “Data Type Combinations” Using Objects

An ‘object’ is a collection of information that we give a label.

For example, we can make a class of objects called “Dog”. Each instance of a dog
will have a name, age, and breed.

Making our own “Data Type Combinations” Using Objects

An ‘object’ is a collection of information that we give a label.

For example, we can make a class of objects called “Dog”. Each instance of a dog
will have a name, age, and breed.

Then, we can create a “Dog”, for example, “Dog1”, with some data attached to it:

- Name: “Spot” [string]
- Age: 11 [integer]
- Breed: “Golden Retriever” [string]

So if someone asks us about parts of Dog1, all of this info is grouped together. It is
separate from Dog2, or Dog3, etc.

Making our own “Data Type Combinations” Using Objects

We can think of an ‘object’ as a group of variables in a labeled bin. Another classic
example is a customer on a website:

A customer has:

- Email
- Password
- Age
- Phone Number
- Address

Customer 112345 has:

- Email: “customer1@gmail.com”
- Password: “password123”
- Age: 24
- Phone #: “3012469980”
- Address: “554 Normweller Road,

College Park, MD, 20872”

Objects vs. Classes

“Dog” is a class, like a blueprint, but an instance of that class, “Dog1” is an object

We can have many Dogs, but only one Dog1 Dog1 is a Dog

Class 1

Object 1
Object 2

Object 3

Class 2

Object 4
Object 5

Using Object & Their Data

We can ask for Dog1.age, Dog1.name, and Dog1.breed to get the information
(variables) stored inside the object:

print(Dog1.age)

Creating an Object Syntax

Syntax:

class classname:

def __init__(self, var1 = default, var2 = default, …):

self.variable1 = var1

self.variable2 = var2

object1 = classname(value1, value2, …)

Code that Checks your ID

Let’s make a “Drivers_License” object, and write a program that checks if you can
buy alcohol!

Hello (name)!

You are (age) years old and you (can/cannot) buy alcohol!

(If you are <21) You must wait (number) Years…

Then we can create an array of driver’s licences, and go through them 1-by-1

from datetime import datetime

current_year = datetime.now().year
print(current_year)

Functions

A function is a piece of code that takes in variables (inputs) and does
something with them.

Sometimes they return variables too (outputs)

def addition(num1, num2):

num3 = num1 + num2

return num3

Functions inside Objects

You can have a function that comes with an object. For example, maybe the Dog
can “bark”.

def bark(self):

print(self.name + “says BARK!”)

dog1.bark()

Upcoming Topics

Lesson 1: Coding Basics & Logic

Lesson 2: Arrays, Loops, & Logic

Lesson 3: 2D Arrays, Objects, Functions

Lesson 4: Tkinter User Interfaces

Access this lesson and extra materials online!

Visit our Wiki Page:

https://ter.ps/STEMworkshop

https://ter.ps/STEMworkshop

Form for Email list

Visual Studio Code

- Where we type all our code
- code.visualstudio.com

Coding on our computers

Python

- Lets our computer run our
written code

- python.org/downloads

http://code.visualstudio.com/
http://python.org/downloads

What is Visual Studio Code (VSCode)?

A nicer way to write and edit code

- Technically, all code could be written in notepad
- VSCode has tools that make coding easier

- Autocompletes variable names
- Colors written code
- User extensions for additional features
- Highlights errors
- More!

Functions
Define a function for addition
def add(a, b):
 return a + b

Define a function for subtraction
def subtract(a, b):
 return a - b

Define a function for multiplication
def multiply(a, b):
 return a * b

Define a function for division
def divide(a, b):
 if b == 0:
 return "Error! Cannot divide by zero."
 return a / b

Using the functions
x = 10
y = 5

Call the functions and print the results
sum_result = add(x, y)
print("Addition:", sum_result)

diff_result = subtract(x, y)
print("Subtraction:", diff_result)

product_result = multiply(x, y)
print("Multiplication:", product_result)

quotient_result = divide(x, y)
print("Division:", quotient_result)

class license:

 def __init__(self, myname,
myheight, myYoB, mylicense_id):
 self.name=myname
 self.height = myheight
 self.YoB = myYoB
 self.license_id = mylicense_id

def check_age(license):
 age = 2025 - license.YoB
 if age >= 21:
 print("You can buy alcohol")
 else:
 print("You can't buy alcohol")

jj_license = license("JJ", 6.0, 2008,
12345)
check_age(jj_license)

